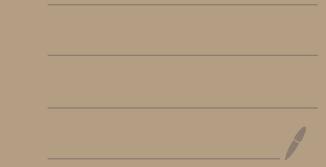
Math 4550 Homework 2 Solutions



$$\mathbb{Z}_{4} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$$

O has order 1 Since its the identity

$$T$$

$$T+T=Z$$

$$T+T+T=3$$

$$T+T+T+T=Y=0$$

$$T$$

 $\frac{3}{3+3} = 6 = 2$   $\frac{3}{3+3+3} = 9 = 1$   $\frac{3}{3+3+3} = 12 = 0$ 

$$(1)(6)$$
  $\mathbb{Z}_{5} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ 

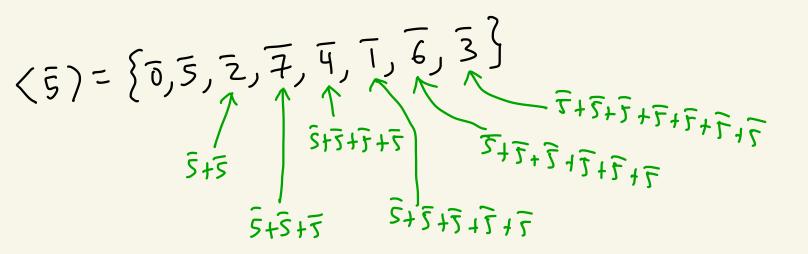
D has order 1 since it's the identity element

$$\begin{array}{c} I \\ \overline{I} + \overline{I} = \overline{2} \\ \overline{I} + \overline{I} + \overline{1} = \overline{3} \\ \overline{I} + \overline{I} + \overline{I} = \overline{4} \\ \overline{I} + \overline{I} + \overline{1} + \overline{1} = \overline{4} \\ \overline{I} + \overline{I} + \overline{1} + \overline{I} + \overline{I} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{5} = \overline{0} \\ \overline{I} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{2} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} + \overline{1} = \overline{1} = \overline{1} \\ \overline{1} = \overline{1} \\ \overline{1} + \overline{1} + \overline{1} + \overline{1}$$

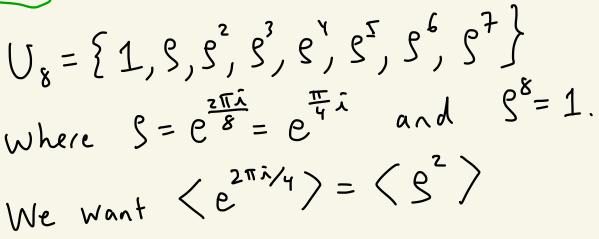
$$Sr^{2} \neq 1$$
  
 $(sr^{2})^{2} = Sr^{2}sr^{2} = SSr^{2}r^{2} = S^{2} \cdot 1 = 1 \cdot 1 = 1$   
 $(sr^{2})^{2} = Sr^{2}sr^{2} = SSr^{2}r^{2} = S^{2} \cdot 1 = 1 \cdot 1 = 1$   
So,  $Sr^{2}$  has order Z

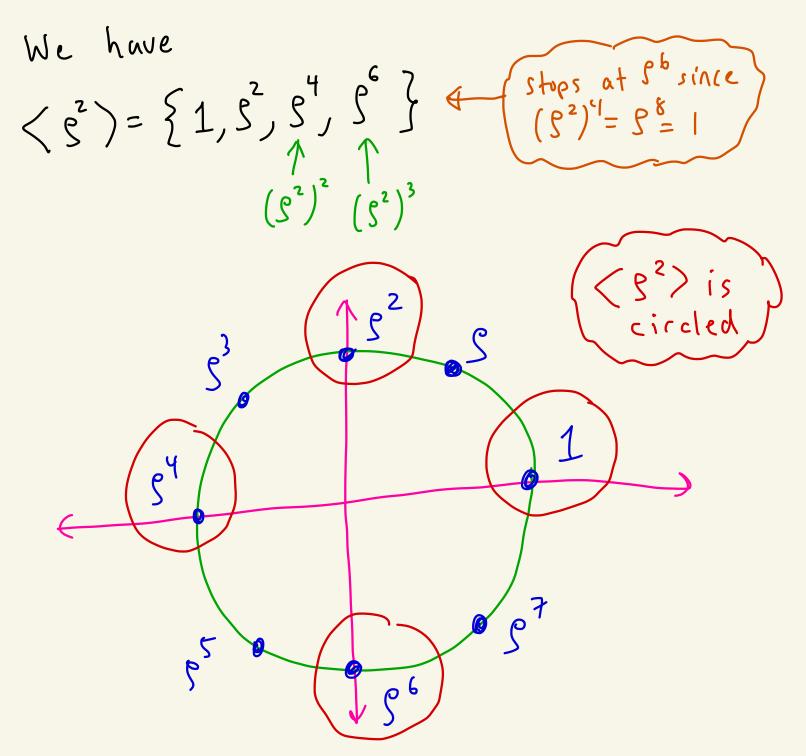


 $Z_{8} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ stops at 6 since  $\overline{z+\overline{z}+\overline{z}+\overline{z}}=\overline{8}=\overline{0}$  $\langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6} \}$   $\uparrow \uparrow$   $\overline{2+\overline{2}} \quad \overline{2+\overline{2}+\overline{2}+\overline{2}}$ stops at  $\frac{4}{4}$  since  $\frac{4}{4}$  +  $\frac{7}{4}$  =  $\frac{8}{8}$  =  $\frac{5}{6}$  $\langle \overline{4} \rangle = \{ \overline{0}, \overline{4} \} \checkmark$ 

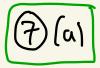








6 IR\* = IR-ZoZ is a group under multiplication.  $\langle 3 \rangle = \{ 3^k \mid k \in \mathbb{Z} \}$  $= \{ \dots, 3^{-4}, 3^{-3}, 3^{-2}, 3^{-1}, 1, 3, 3^{-3}, 3^{-4} \}$  $= \left\{ \frac{1}{3^{4}}, \frac{1}{3^{3}}, \frac{1}{3^{2}}, \frac{1}{3}, \frac{1}{3}, \frac{3}{3}, \frac{3}{3^{2}}, \frac{3}{3}, \frac{3}{3^{2}}, \frac$ 



$$det(s) = det({\binom{0}{1}}{\binom{0}{2}} = 0.0 - (-1)(1) = 1 \neq 0$$
  
So, SEGL(21)R)

(۲)(۴

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$S^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

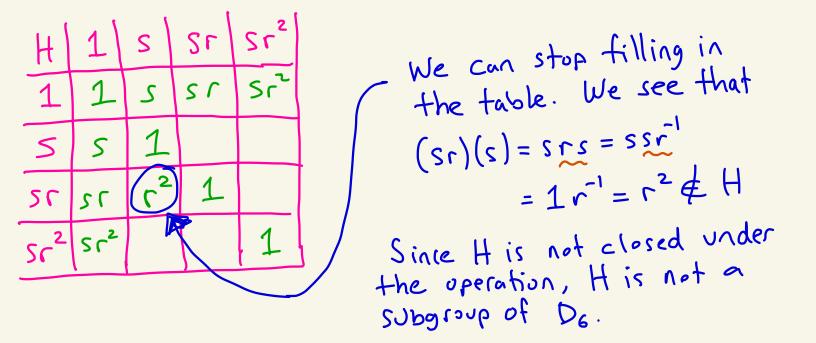
$$S^{3} = S \cdot S^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$S^{4} = S \cdot S^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
Thus, S has order 4 and
$$\langle S \rangle = \sum \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

$$\begin{split} & \underbrace{\mathbb{R}} \\ & \text{Note det}(T) = \det\left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{2} = T \cdot T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{3} = T \cdot T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{3} = T \cdot T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{3} = T \cdot T^{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{3} = T \cdot T^{3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{0} = T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{0} = T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-2} = T^{-1} T^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-2} = T^{-1} T^{-2} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-3} = T^{-1} T^{-2} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-2} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-4} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-4} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{smallmatrix}\right) \\ & T^{-4} = T^{-1} T^{-4} = \begin{pmatrix} 1 & -1$$

(9)  $D_{c} = \{1, r, r^{2}, s, sr, sr^{2}\}$ and  $r^{3} = 1$ ,  $s^{2} = 1$ . Since  $r^{3} = 1$  we know  $r' = r^{3}r' = r^{2}$ 

Let H = {1, s, sr, sr<sup>2</sup>} in D6. We use a fable to show that H is not a subgroup of D6.



$$\begin{array}{c} \textcircled{10} \\ \textcircled{10} \\ \textcircled{10} \\ \textcircled{10} \\ @} \\ \begin{array}{c} B_{g} = \left\{ 1, r, r^{2}, r^{3}, s, sr, sr^{2}, sr^{3} \right\} \\ and \\ r^{4} = 1, s^{2} = 1, \\ r^{k}s = sr^{k}. \\ Let \\ H = \left\{ 1, r^{2}, s, sr^{2} \right\} \\ Let \\ H = \left\{ 1, r^{2}, s, sr^{2} \right\} \\ We \\ vse \\ a \\ table \\ to show \\ that \\ H \\ tr^{2} \\ sr^{2} \\ sr^{2$$

① 1∈H
② If is closed under the group operation by the table
③ If is closed under inversion by the table since
③ If is closed under inversion by the table since
(r<sup>2</sup>)<sup>-1</sup>=r<sup>2</sup>∈H, s<sup>-1</sup>=s∈H, (sr<sup>2</sup>)<sup>-1</sup>=sr<sup>2</sup>∈H
By ①, ②, ③ we have that H≤Dg

$$\square \text{ Let } N = \underbrace{ \left( \begin{smallmatrix} i \\ \circ \\ i \end{smallmatrix} \right) | x \in \mathbb{R} }$$
  
Proof that  $N \trianglelefteq GL(z, \mathbb{R})$ :

(1) Setting 
$$x = 0$$
 gives  $\binom{10}{01} \in N$   
(2) Let  $A = \binom{10}{01}$  and  $B = \binom{10}{01}$  be in N  
where  $a, b \in \mathbb{R}$ .  
Then,  
 $AB = \binom{10}{01}\binom{10}{01} = \binom{100}{01}$   
which satisfies  $a+b \in \mathbb{R}$ .  
So,  $AB \in N$ .  
(3) Let  $C = \binom{10}{01} \in N$  where  $c \in \mathbb{R}$ .  
Then,  $C^{-1} = \binom{1-c}{01} \in N$  because  $-c \in \mathbb{R}$ .

12 Let 
$$H = \{2x+3y \mid x, y \in \mathbb{Z}\}$$
  
Proof that  $H \leq \mathbb{Z}$ :  
1) Sething  $x=0, y=0$  gives  $0=2(0)+3(0) \in H$   
2) Let  $a = 2x_1+3y_1$  and  $b = 2x_2+3y_2$   
be in  $H$  where  $x_1, y_1, x_2, y_2 \in \mathbb{Z}$ .  
Then,  
 $a+b = 2x_1+3y_1+2x_2+3y_2$   
 $= 2(x_1+x_2)+3(y_1+y_2)$   
is in  $H$  since  $x_1+x_2, y_1+y_2 \in \mathbb{Z}$ .  
3) Let  $c = 2x_3+3y_3$  be in  $H$  where  
 $x_{33}, y_3 \in \mathbb{Z}$ .  
Then,  $-c = 2(-x_3)+3(-y_3)$  is in  $H$   
since  $-x_3, -y_3 \in \mathbb{Z}$ .  
By  $(0, \mathbb{Q})$ , (3) we have  $H \leq \mathbb{Z}$ .

(i) 
$$H = \{x \in G \mid x^{t} = e\}$$
 and G is an abelian  
group.  
Proof that  $H \leq G$ :  
(i)  $e^{2} = e$  gives that  $e \in H$ .  
(i)  $e^{2} = e$  gives that  $e \in H$ .  
(i)  $e^{2} = e$  gives that  $e \in H$ .  
(i)  $e^{2} = e$  gives that  $e \in H$ .  
Then  $a^{2} = e$  and  $b^{2} = e$ .  
Thus,  
 $(ab)^{2} = (ab)(ab) = abab$   
 $abb$   
 $(ab)^{2} = (ab)(ab) = abab$   
 $abb$   
 $(ab)^{2} = (ab)(ab) = abab$   
 $abb$   
 $(ab)^{2} = (ab)(ab) = abab$   
 $= a^{2}b^{2}$   
 $= e^{2}e = e$   
Since  $(ab)^{2} = e$  we get that  $ab \in H$   
(i) Let  $c \in H$ .  
Then  $c^{2} = e$ .  
So,  $c^{-2}c^{2} = c^{-2}e$   
Thus,  $e = c^{-2}$ .  
So,  $e = (c^{-1})^{2}$   
Thus,  $c^{-1} \in H$ .  
By (D, (Z), (Z)) we have that  $H \leq G$ .

(16)  
(1) We know that 
$$ey = y = ye$$
 for all  
 $y \in G$ . Thus,  $e \in Z(G)$ .  
(2) Let  $a, b \in Z(G)$ .  
Then  $ay = ya$  for all  $y \in G$ .  
 $and by = yb$  for all  $y \in G$ .  
Thus,  
 $(ab)y = aby = ayb = yab = y(ab)$   
for all  $y \in G$ .  
So,  $ab \in Z(G)$ .  
(3) Let  $c \in Z(G)$ .  
Then,  $cy = yc$  for all  $y \in G$ .  
So,  $c'(cy)c' = c'(yc)c'$  for all  $y \in G$ .  
Thus,  $yc' = c'y$  for all  $y \in G$ .  
Thus,  $yc' = c'y$  for all  $y \in G$ .  
Itence  $c' \in Z(G)$ .  
By (D, Q), We know that  $Z(G) \leq G$ .